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Abstract

We treat the irreversible extension of the classical problem of maximum mechanical work that may be obtained from a system com-
posed of: a resource fluid at flow, a set of sequentially arranged engines, and an infinite bath. In the engine mode the fluid�s temperature T
decreases along the path, thus tending to the bath temperature Te, and the system delivers work. In a related classical problem the process
rates vanish due to the reversibility; here, however, finite rates and consistent losses of the work potential are admitted. The variational
calculus leads to a finite-rate generalization of the maximum-work potential called the finite-rate exergy. This finite-rate exergy is a func-
tion of the usual thermal coordinates and the overall number of transfer units s or a rate index h, which is, in fact the Hamiltonian of
optimal, active (energy-generating) relaxation process to equilibrium. The resulting bounds on the work delivered or supplied are stron-
ger than the classical reversible bounds.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Thermodynamic imperfection; Efficiency; Optimal paths; Generalized exergy
1. Introduction

The classical available energy, which describes the
maximum work yield for a system approaching the thermo-
dynamic equilibrium with the environment, refers to the
reversible evolution. In fact, the thermal availability may
be obtained by integration of the product of the Carnot
efficiency and the heat differential. When rates of the sys-
tem�s approach to the equilibrium are finite, irreversible
processes produce the entropy, and the system�s efficiency
drops below that of Carnot. For evolutions with finite
rates, generalized availabilities may be defined that incor-
porate non-Carnot efficiencies associated with an inevitable
minimum of the entropy production. We outline main rules
serving to model the efficiency decrease caused by the finite
rates. In particular, we discuss mathematical modeling of
radiation engines as rate systems governed by nonlinear
laws of thermodynamics and transport. A general formula
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linking the converter�s efficiency with the entropy produc-
tion is derived to estimate an irreversible limit for power
yield and to define a finite-rate extension of the classical
work potential. The work produced is the cumulative effect
obtained from a resource fluid at flow, a set of sequentially
arranged engines, and an infinite bath. The use of optimal
control methods leads to maximum work or a finite-rate
generalization of the classical available energy.

The generalized availability is a function of usual ther-
mal coordinates and a factor quantifying the effect of sys-
tem�s finite rates. Resulting bounds on the real work
delivery or supply are stronger than the classical reversible
bounds. The restrictive nature of traditional (thermostatic)
bounds implies that bounds associated with finite rates of
state change can be at least equally suitable. Generalized
available energy of the fluid implies decreased (in compar-
ison with Carnot) efficiencies of energy generators. Mathe-
matical theory and economical aspects of decreased
efficiencies and generalized availabilities are essential.

The classical exergy defines bounds on the common
work delivered from (or supplied to) slow, reversible
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Nomenclature

A1 generalized exergy density of a continuous pro-
cess (J m�3)

Aclass classical available energy or exergy (J m�3)
av total area of heat exchange per unit volume

(m2 m�3)
c constant specific heat referred to unit volume

(J m�3 K�1)
cv(T) variable specific heat referred to unit volume

(J m�3 K�1)
F cross-sectional area perpendicular to the fluid

flow (m2)
_G fluid mass flux (kg s�1)
g1, g partial and overall conductance (J s�1 K�1)
HTU height of transfer unit (m)
h Hamiltonian in energy units (J m�3)
hr Hamiltonian in entropy units (J m�3 K�1)
Lr Lagrangian of the problem in entropy units

(J m�3 K�1)
N total number of stages (–)
n stage number (–)
P, p total and local power output (J s�1)
Q1 heat delivered from the first reservoir (J)
q1 driving heat power or dQ1/dt (J s

�1)
q10 heat flux at state 1 0 (Fig. 1) (J s�1)
r overall resistance (J�1 s K)
S total entropy of the system (J K�1)
Sr entropy produced in the system (J K�1)
Sr = rs/V entropy source per unit volume (J K�1 m�3)
DS10 entropy change in circulating fluid along T1,

(J K�1)
T variable temperature of resource fluid (K)
T1, T2 bulk temperatures of reservoirs 1 and 2 (K)

T 10 ; T 20 temperatures of circulating fluid (Fig. 1) (K)

Ti, T f initial and final temperature of fluid 1 in dynam-
ical (finite-resource) problem (K)

T0 = T e constant temperature of environment (K)
T 0 Carnot temperature control (K)
_T ¼ dT =ds rate of control of T in time s (K)
t physical time (s)
_W mechanical power (J s�1)
w specific work of the fluid at flow, power per unit

mass flux (J kg�1)
x transfer area coordinate (m)
a overall heat transfer coefficient (J m�2 s�1 K�1)
c cumulative conductance (J s�1 K�1)
er Legendre transform of Lagrangian Lr

(J m�3 K�1)
v time constant (–)
g = p/q1 first-law efficiency (–)
U factor of internal irreversibility (–)
s non-dimensional time (x/HTU) (–)

Subscripts

i ith state variable
1, 2 first and second fluid

Superscripts

e environment, equilibrium
f final state
i initial state
k or n number of kth or nth stage
N total number of stages
0 effective quantity modified by presence of U
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processes [4]. Such bounds are reversible; the magnitude of
the work delivered during the reversible approach to equi-
librium is equal to the one of the work supplied, after the
initial and final states are after the initial and final states
are inverted, i.e. when the second process reverses to the
initial state of the first. Our research is towards generaliza-
tion of the classical exergy for finite rates. During the ap-
proach to the equilibrium the so-called engine mode of
the system takes place in which the work is released, during
the departure-the so-called heat-pump mode occurs in
which the work is supplied. The work W delivered in the
engine mode is positive by assumption. In the heat-pump
mode W is negative, which means that the positive work
(�W) must be supplied to the system. To find a generalized
exergy, optimization problems are considered, for the max-
imum of the work delivered (max W) and for the minimum
of the work supplied (min (�W)). We show that while the
reversibility property is lost for such exergy, its (kinetic)
bounds are stronger and hence more useful than classical
thermostatic bounds. This substantiates role of the ex-
tended exergy for evaluation of energy limits in practical
systems.

With functionals of power generation (consumption)
and variational calculus [5] we can calculate the exten-
ded exergy and related extremum work. Our problem of
generalized exergy falls into the category of finite-time
potentials, an important problem of contemporary thermo-
dynamics [2]. In this paper we solve the problem of extre-
mum work by using the concept of multistage energy
production or consumption, where each stage is the
so-called Curzon–Ahlborn–Chambadal–Novikov process
[2,3]. The concept of single irreversible stage is illustrated
in Fig. 1 depicting the temperature-entropy diagram of
the stage. Each stage can work either in the heat-pump
mode (larger, external loop in Fig. 1) or in the engine mode
(smaller, internal loop in Fig. 1).

Our analysis here extends the previous analyses of the
problem [2,3,1] by taking into account internal irreversibil-
ities within the thermal machines at each stage of the oper-
ation following the recent method that applies the factor of
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Fig. 1. Principle of designations for two basic modes with internal and
external dissipation: power yield in an engine and power consumption in
a heat pump. The internal dissipation is characterized by the coefficient
U ¼ DS20=DS10 ; where DS10 , and DS20 , are the respective the entropy
changes of the circulating fluid.
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internal irreversibilities, U [7]. By definition, U = DS2 0/DS1 0

(where DS1 0 and DS2 0 are respectively the entropy changes
of the circulating fluid along the two isotherms T1 0 and
T2 0 in Fig. 1) equals the ratio of the entropy fluxes across
the thermal machine, U ¼ JS20=JS10 . Due to the second
law inequality at the steady state the following inequalities
are valid: JS20=JS1 > 1 for engines and JS20=JS1 < 1 for heat
pumps; thus the considered ratio U measures the process
irreversibility. In fact, U is a synthetic measure of the ma-
chine�s imperfection. The quantity U satisfies inequality
U > 1 for engine mode and U < 1 for heat-pump mode of
the system. Our purpose is to derive a generalized exergy
in terms of U.

In this paper, we assume the constancy of U. Note, how-
ever, that whereas one can always handle the effect of inter-
nal dissipation in the form described by Eq. (3) below,
one may treat U as a constant coefficient only in the first
approximation. In general, U may be a complicated func-
tion of the machine�s operating variables. Referring to
the variability of U, Sieniutycz and Szwast [7] presented
in Appendix of their paper an analysis that allows to ex-
ploit data of the internal entropy production rint

s to calcu-
late an averaged value of coefficient U. Such mean U is next
used in analyses within the boundaries of operative param-
eters of interest. An alternative analysis which uses rint

s in-
stead of U in modeling is not easier since the quantity rint

s

may also be a complicated function of the machine�s oper-
ating variables; in the description of thermal machines the
use of U is often more suitable than the use of rint

s . Clearly,
applying a variable U or rint

s will ensure more exact model-
ing at the expense of much more complicated formulas.
Yet, in this latter case, due to the resulting complication,
the results universality is lost and one is usually forced to
use numerical approaches instead of analytical ones,
achieved for constant U.

The second issue requiring at least a brief comment is
the use of the thermodynamic entropy in the theory pre-
sented. If the working body is far from equilibrium then
the notion of thermodynamic entropy for it is no longer
applicable. Such entropy only exists and can be calculated
subject to the assumption of internal equilibrium. This is
why in finite time thermodynamics it is usually assumed
that the significant irreversibilities are concentrated at con-
tact points between internally equilibrium subsystems.
For highly non-equilibrium systems statistical approaches
involving probability distributions and master equations
may be more fruitful.

In our mathematical formalism the so-called Carnot
temperature T 0 appears, defined by Eq. (6) below. The ori-
gin and role of T 0 was discussed in detail earlier [6] for stea-
dy endoreversible processes (U = 1) associated with infinite
(constant temperature) reservoirs. In the present work, in
its part two, Carnot temperature is applied for dynamic
(unsteady) evolutions associated with the decay of the ther-
mal potential (temperature) of a finite reservoir in time.
Moreover, the endoreversibility assumption is abandoned
(arbitrary U different than unity). It is just the finiteness
of the upper reservoir that is consistent with the notion
of exergy, in our case generalized or rate dependent exergy.

2. Entropy production and efficiency

We shall present here a shortest possible proof of the
formula describing the real work by using the so-called
Gouy–Stodola law that links the lost work with the entro-
py production [4]. By evaluating total entropy produced at
an infinitesimal stage (the sum of external and internal
parts) as the difference between the outlet and inlet entropy
flows we find in terms of the first-law efficiency g

dSr ¼
dQ2

T 2

� dQ1

T 1

¼ dQ1ð1� gÞ
T 2

� dQ1

T 1

¼ dQ1

T 2

ð1� g� T 2=T 1Þ. ð1Þ

This is a general equation as there was no special assump-
tions involved in its derivation. It states that the entropy
production in an arbitrary thermal engine is directly related
to the deviation of the engine�s efficiency from the corre-
sponding Carnot efficiency. This conclusion will lead us
to an important analytical formula for the total entropy
source that will enable its direct optimization. To derive
such a formula we note that the thermal efficiency of any
real thermal engine can always be written in the form

g ¼ 1� dQ2

dQ1

. ð2Þ

The entropy balance of the thermal machine contains the
internal entropy production rint

s as a source term. In terms
of internal irreversibility factor U ¼ 1þ T 10 drint

s =dQ1 the
entropy balance of the internal part takes the form usually
applied for thermal machines

U
dQ1

T 10
¼ dQ2

T 20
. ð3Þ

One can evaluate U from the internal entropy production
within the thermal machine. As in many cases U is a
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complicated function of the machine�s operating variables
an averaged value of U over the cycle is found. Next this
average U is treated as the process constant. The efficiency
g follows in terms of U in the form

g ¼ 1� dQ2

dQ1

¼ 1� U
T 20

T 10
. ð4Þ

This equation simplifies, of course, to the Carnot formula
in terms of both primed T when the internal entropy source
vanishes which is the case of so-called endoreversible
operation. Note that no special assumptions were made
to derive Eqs. (1) and (4), yet U can be a variable quantity
dependent of all state coordinates.

After eliminating g from Eqs. (1) and (4) we conclude
that, quite generally, the total entropy produced at an infin-
itesimal stage can be written in the form

dSr ¼
dQ1

T 2

U
T 20

T 10
� T 2

T 1

� �

¼ dQ1

1

T 0 �
1

T 1

� �
þ dQ1

ðU� 1Þ
T 0 . ð5Þ

In the last expression of this equation the structural
quantity called the Carnot temperature T 0 was introduced
that satisfies the thermodynamic relation

T 0 � T 2T 10=T 20 . ð6Þ

In terms of T 0 the thermal efficiency g assumes the simple,
pseudo-Carnot form

g ¼ 1� U
T 2

T 0 . ð7Þ

The resulting expression (5) describes the sum of the exter-
nal entropy source (in the reservoirs) and the internal
entropy source (within the thermal machine). We observe
a remarkable simplicity of the analytical description in
terms of the Carnot temperature.

3. Steady heat flux and power production

An expression describing the heat flux propelling the
thermal machine can also be obtained. To get an explicit
analytical formula we must apply some special models of
the heat exchange. Here the Newtonian model with con-
ductances g1 and g2 is used. The corresponding heat trans-
fer coefficients are a1 and a2. Since the entropy balance (3)
holds, temperatures T 10 and T 20 are not independent but
linked by

g2ðT 20 � T 2Þ
T 20

� U
g1ðT 1 � T 10 Þ

T 10
¼ 0. ð8Þ

This means that the system has only one degree of free-
dom (one independent control). We use (6) to substitute
into (8). We then obtain T 10 in terms of Carnot T 0

T 10 ¼
Ug1T 1 þ g2T

0

Ug1 þ g2
; ð9Þ
and the corresponding equation for temperature T 20 �
T 10T 2=T 0. The fluxes of heat are

q1 �
d2Q1

a1dtdA1

g1 ¼ ðT 1 � T 10 Þg1 ¼
g1g2ðT 1 � T 0Þ
Ug1 þ g2

� g0ðUÞðT 1 � T 0Þ; ð10Þ

and q2 = q1(1 � g), where g is defined by the pseudo-
Carnot expression (7). In (10) an operational overall con-
ductance has been defined as follows:

g0ðUÞ � g2g1
Ug1 þ g2

¼ g�1
1 þ Ug�1

2

� ��1
. ð11Þ

This is, in fact, the suitably modified overall conductance of
an inactive heat transfer in which the use of the operative
(U dependent) heat conductance, g 0 is required.

In terms of the Carnot temperature the work flux or
power p follows in the form

p ¼ q1g ¼ g0ðUÞðT 1 � T 0Þ 1� U
T 2

T 0

� �
. ð12Þ

Under the assumption of a constant U, the maximum
power of the engine is found by differentiation of p with re-
spect to free control T 0. The efficiency at maximum power
is

gmp ¼ 1� UT 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UT 1T 2

p
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UT 2=T 1

p
. ð13Þ

This formula generalizes the well-known result of Curzon–
Ahlborn–Chambadal–Novikov ([3], Berry et al., 2000) for
the case of imperfect thermal machine. Rigorously, it ap-
plies to fluids with a constant heat capacity. However, it
is valid only for constant U and under the assumption of
infinite reservoirs. This needs to be improved in the case
of a finite reservoir or a finite flow of fluid, as shown in
the corresponding analysis below.

4. Finite resources and dynamical optimization

When resources become finite or the propelling fluid
flows at a finite rate the driving temperature and other
intense parameters decrease along the process path. The
above analysis needs to be generalized to take into account
the decay of the thermal potential in time or space. A dy-
namic analysis replaces the previous (steady) analysis,
and the formalism is transferred from the realm of func-
tions to the realm of functionals. Here the optimization
task is to find an optimal profile of the driving temperature
along the resource fluid path that assures the minimum of
the integral entropy production and—simultaneously—the
extremum of the work, consumed or delivered. The idea of
a sequential dynamical process leading to the generalized
exergy is illustrated in Fig. 2.

Let us outline derivations leading to functionals describ-
ing generalized work and exergy. From the pseudo-Carnot
equation (7) the efficiency representation of the Carnot
temperature follows in the form T 0 = UT2/(1 � g). Eq.
(10) then reads in terms of the differentials of cumulative
heat flux and the cumulative conductance c 0,
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d _Q1 � dc0ðT 1 � UT 2=ð1� gÞÞ. ð14Þ

This can be solved with respect to g to yield a suitable for-
mula describing the instantaneous efficiency in terms of the
local heat flux density or the derivative d _Q1=dA

g ¼ 1� U
T 0

T � d _Q1=dc0
¼ 1� U

T 0

T � d _Q1=ða0 dAÞ
. ð15Þ

The derivative term t ¼ d _Q1=dc
0 is a process control that

has units of the temperature itself. It is essential that it is
proportional to the derivative of T with respect to the re-
source contact time t with engines� fluid or dimensionless
time s. This property follows from the differential balance
of the driving fluid given below in the form of several alter-
native expressions

d _Q=dc0 � t ¼ � _GcdT=ða0avF dxÞ ¼ �qcdT =ða0av dtÞ
¼ �vdT=dt ¼ �dT=ds ð16Þ

of which the two last ones are the most suitable. In Eq.
(16), v = c/(a 0av) is a time constant for the energy exchange
process. Two other useful quantities can also be selected in
Eq. (16). The first one is a spatial scale for the overall trans-
fer, HTU,

_Gc
a0avF

¼ HTU; ð17Þ

whereas the second is a non-dimensional time, s

s � x
HTU

¼ a0avF
_Gc

x. ð18Þ

HTU has the units of length and is known as the �height of
the heat transfer unit�. In the above formula HTU is
referred to the fluid at state 1. The independent variable s
is a non-dimensional length called the �number of transfer
units�. Clearly, the variables s, x and t measure the system�s
extent. The fluid residence time, t, is proportional to this
extent. Even in nonlinear fluids the time constant v =
c/(a 0av), linking t and s, is practically temperature indepen-
dent due to the similar type of dependence of a 0 and c on T.
This property substantiates the usefulness of the non-
dimensional variable s that absorbs into its definition the
time constant v. With Eq. (16) the local pseudo-Carnot effi-
ciency (15) takes a suitable form

g ¼ 1� U
T 2

T þ vdT=dt
¼ 1� U

T 2

T þ dT=ds
. ð19Þ

Note the presence of the Carnot temperature operators in
the denominators of these expressions. The suitability of
Eq. (19) follows from the presence of T itself and the time
derivative of T, the property that renders the cumulative
workW a well-defined functional. With Eq. (19), the cumu-
lative power per unit fluid flow, _W = _G, can be obtained for
any process mode by integration of the product of Eq. (19)
and the associated heat differential cdT between an arbi-
trary initial temperature T i to an arbitrary final tempera-
ture T f of the fluid. This integration leads to a finite-rate
generalization of the specific work of the flowing fluid

w � _W = _G ¼ �
Z sf

si
c 1� UT 2

T þ vdT=dt

� �
dT

¼ �
Z sf

si
c 1� UT 2

T þ _T

� �
_T ds; ð20Þ

where the dots in the last expression refer to the derivatives
with respect to the non-dimensional time s rather than t.

The specific work expression (20) can be transformed
into the functional

w ¼ �
Z sf

si
c 1� T 2

T

� �
dT

� T 2

Z sf

si
c

_T

T ðT þ _T Þ
� U� 1

T þ _T

� �
_T ds; ð21Þ

where the first (classical) part is path-independent and de-
scribes the reversible work.

From Eq. (5) an integral describing the specific entropy
production in the dynamical problem follows as

sr ¼ _Sr= _G ¼
Z sf

si
c

T

T ðT þ _T Þ
� U� 1

T þ _T

� �
_T ds. ð22Þ

Its two additive parts take into account the external and
internal dissipation. The presence of integral (22) in Eq.
(21) proves that Eq. (21) is consistent with the Gouy–Sto-
dola law whenever the second reservoir is infinite and has
the temperature of the environment, T2 = T e. For the fixed
end states T i and T f (initial and final temperatures of the
resource fluid) the extremum trajectories of functionals
(21) and (22) are the same because the first integral in
Eq. (21) is path independent. Of course, this is associated
with the potential properties of classical (reversible) work.
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5. Extremum dynamical path from the first integral

The variational calculus applied to Eq. (21) or (22) leads
to the Euler–Lagrange equation of the optimization prob-
lem in which either work or entropy production are extre-
mized. As temperature T is the only dynamical variable,
the state dimensionality is one, and instead of solving the
Euler–Lagrange equation one may write down the Legen-
dre transform of the integrand of (21) or (22) as the first
integral of the problem (an energy-like integral). The ob-
tained first integral is the constant of the extremal path,
say, h for the work functional or hr for the entropy produc-
tion functional. It follows that h = T2hr, i.e. both ap-
proaches result in the same path whenever the second
reservoir is infinite, i.e. whenever T2 is constant.

We shall now describe some insightful details of the der-
ivation leading to the Legendre transform of the thermody-
namic Lagrangian, Lr. For the integrand of the entropy
production integral, Eq. (22), taken in a slightly generalized
form which allows the state dependent heat capacity

LrðT ; _T Þ ¼ cvðT Þ
_T
2

T ðT þ _T Þ
þ ð1� UÞ

_T

T þ _T

 !
ð23Þ

we calculate the derivative

oLr=o _T ¼ cvðT Þ
2 _TT þ _T

2

T ðT þ _T Þ2
þ ð1� UÞ T

ðT þ _T
2Þ

 !
ð24Þ

and then substitute the expression

_T oLr=o _T ¼ cvðT Þ
2 _T

2
T þ _T

3

T ðT þ _T Þ2
þ ð1� UÞ T _T

ðT þ _T Þ2

 !
; ð25Þ

into the formula for the Legendre transform of Lr. After
simplification of the expression

er
cvðT Þ

�
_T oLr=o _T � Lr

cvðT Þ

¼ 2 _T
2
T þ _T

3

T ðT þ _T Þ2
þ ð1� UÞ T _T

ðT þ _T Þ2
�

_T
2

T ðT þ _T Þ

� ð1� UÞ
_T

T þ _T
ð26Þ

we obtain the following Legendre transform of the thermo-
dynamic Lagrangian Lr

_T oLr=o _T � Lr ¼ cvðT Þ
_T
2

ðT þ _T Þ2
� ð1� UÞ

_T
2

ðT þ _T Þ2

 !
.

ð27Þ
The first (U-free) component describes the effect of external
entropy production, whereas the second one—the effect of
internal entropy production. In an ‘‘endoreversible’’ pro-
cess, where only external dissipation takes place and
U = 1, the second term vanishes. In a general situation
where both external and internal contributions are essential
our approximate constant—U theory yields the following
simple result for the Legendre transform of the total
entropy production

erðT ; _T Þ � _T oLr=o _T � Lr ¼ cvðT Þ
U _T

2

ðT þ _T Þ2
. ð28Þ

In conclusion, for the entropy Lagrangian Lr i.e. the
integrand of the functional (22), an equation describing
the extremal path is obtained from the equation

Uc
_T
2

ðT þ _T Þ2
¼ hr. ð29Þ

The quantity hr is the parameter called the numerical Ham-
iltonian of the optimization problem in the entropy repre-
sentation. Solving equality (29) with respect to rate _T we
obtain an optimal trajectory associated with the minimum
entropy production or extremum work in our dynamical
process.

After introducing the intensity constant of the optimal
process, n, defined by an equation

n
hr
Uc

� �
� �

ffiffiffiffiffiffi
hr
Uc

r
1��

ffiffiffiffiffiffi
hr
Uc

r !�1

¼ �
ffiffiffiffiffiffi
Uc
hr

r
� 1

� ��1

;

ð30Þ
(upper sign refers to the heat-pump mode, lower one to the
engine mode) an exponential unconstrained extremal
follows for the processes with constant heat capacity

_T ¼ nðhr;UÞT . ð31Þ

Eq. (31) is the representation of an extremal curve in terms
of the ‘‘dissipative Hamiltonian’’ hr, which is the rate indi-
cator of the optimal path. In fact, it is a suitable rate indi-
cator because hr, is constant along any optimal trajectory.
For a vanishing hr an extremal correspond with a revers-
ible quasistatic process, with vanishing rate constant n,
vanishing rate _T and without entropy production. Finite-
rate evolutions correspond with finite values of the quanti-
ties hr; n; _T ; sr and Lr. For very intense processes the
numerical values of these quantities are very high.

Eq. (31) describes the relaxing extremals as a set of
curves parametric with respect to hr (or h). In such equa-
tions the independent variable is the (modified) non-dimen-
sional time s, or the ratio of pipeline length x and the
height of the transfer unit HTU related to g 0 of Eq. (11).
s is identical with the (U dependent) overall number of
transfer units. n(U,hr) is the rate indicator positive for
the fluid�s heating and negative for fluid�s cooling. Its use
in the optimal trajectory prediction is essential in the prob-
lems with given initial conditions for T and _T (initial value
problems in which the specification of T and _T defines both
constants hr and n. Yet, in the case of the two-point-
boundary value problems in which initial and final values
of T are prescribed, it suffices to evaluate and then use
the (numerical value of) constant n. From the boundary
conditions applied for the exponential extremal (31) the
numerical value of n follows in the form
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n ¼ lnðT f=T iÞ=ðsf � siÞ. ð32Þ
To express the same extremal in terms of the Carnot

temperature T 0 ¼ T þ _T requires the use of the equation

dT
ds

¼ T 0 � T ð33Þ

consistent with Eqs. (14) and (16), Eq. (33) describes any
nonoptimal or optimal heat exchange in our problem; thus
it also applies to the optimal situation described by Eq.
(31).

6. Generalized availability

From Eqs. (31) and (32) Carnot-temperature control
ensuring the extremum of work is

T 0ðsÞ ¼ T ðsÞð1þ nÞ

¼ T iðT f=T iÞðs�siÞ=ðsf�siÞ � ð1þ lnðT f=T iÞ=ðsf � siÞÞ.
ð34Þ

It corresponds with the entropy production (14) and the
generalized availability

A1 ¼ Aclass þ cð1� UÞT e lnðT =T eÞ

� cT eU
½lnðT=T eÞ�2

sf � si � lnðT=T eÞ . ð35Þ

Upper sign refers to the heat-pump mode, lower one to the
engine mode. This formula is obtained as the extremum
value of the integral (20) or (21) with the help of the extre-
mum conditions (30) and (31) and subject to the standard
boundary conditions for the exergy as extremal work.
The last term of Eq. (35) may be put in the form in which
the mean logarithmic rate associated with the optimal pro-
cess is the argument of Eq. (35). The classical thermal avail-
ability of this equation is defined in the standard way

Aclass � cðT � T eÞ � cT e lnðT=T eÞ. ð36Þ
In terms of the entropy-representation Hamiltonian, which
is constant rate indicator along every autonomous path the
generalized exergy for the fluid at flow reads

AðT ; T e; hrÞ ¼ AclassðT ; T e; 0Þ � T 0Svgen

¼ AclassðT ; T e; 0Þ � T ecY ðhsÞ ln
T
T e

� �
; ð37Þ

where the Hamiltonian dependent or, simultaneously, rate
dependent coefficient Y(hr) is defined by an equation

Y ðhrÞ � ðhr=ðUcÞÞ1=2 þ ð1� UÞð1��ðhr=ðUcÞÞ1=2Þ. ð38Þ
(Upper sign refers to the heat-pump mode and lower one to
the engine mode.) The classical availability is the potential
or state function; its change between two states describes
the reversible work. On the other hand, generalized avail-
abilities are rate-dependent irreversible extensions of this
classical function including minimally irreversible pro-
cesses. Higher mean rates correspond with larger Hamilto-
nians hr, vanishing or quasistatic rates with vanishing
Hamiltonians. Note that the mean process efficiency or
the ratio A1/Q1 is lower than the pseudo-Carnot efficiency
(7) due to the finiteness of the resource flow and the corre-
sponding decrease of the resource temperature as the pro-
cess advances in time.

7. Concluding remarks

The exergy function (35) or (37) is the generalization of
the standard exergy for the case of dissipative rates and
imperfect power generators. In processes departing from
the equilibrium (upper sign) the generalized exergy is larger
than in processes approaching the equilibrium (lower sign).
This is because one respectively adds or subtracts the prod-
uct of Te and entropy production in equations of the
generalized availability. Importantly, the limits for the
mechanical energy yield or consumption provided by exer-
gies A1 are stronger than those defined by the classical
exergy. In fact, in both modes, the generalized exergies pro-
vide enhanced bounds in comparison with those of classical
exergy. Both internal and external dissipation increases the
minimum work that must be supplied to the system. Like-
wise, both sorts of dissipation decrease the maximum work
that can be produced by the system. The Carnot tempera-
ture application to imperfect dynamical systems (with
relaxed endoreversibility assumption), presented here, sup-
plements and generalizes a less general formalism obtained
earlier for steady endoreversible systems (U = 1; [6]).
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